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Problem Set 7

This problem explores Turing machines, nondeterministic computation, properties of the  R and 
RE languages, and the limits of R and RE languages.  This will be your first experience exploring 
the limits of computation, and I hope that you find it exciting!

Start this problem set early.  The last four questions require material from Monday's lecture, and 
I would advise trying to complete the first two problems over the weekend so that you have more 
time to dedicate to the latter problems.

In any question that asks for a proof, you must provide a rigorous mathematical proof.  You can-
not draw a picture or argue by intuition.  You should, at the very least, state what type of proof  
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 6% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the prob-
lems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, November 16th at 2:15 PM

Due date using a 72-hour extension: Monday, November 19th at 2:15PM



Problem One: Programming Turing Machines (24 Points)

In lecture, we saw how to scale the WB language up to WB6, which supported multiple tracks, multi-
ple stacks, multiple tapes, and multiple finite variables.*  However, the WB6 language still does all its 
works on tapes and tracks.  This question asks you to add in new features to WB6 to make it look more 
like a normal programming language.

Let's define the language WB7 to be WB6 with the introduction of a finite number of counters, vari-
ables that can hold arbitrary natural numbers.  Initially, each counter holds the value 0.  Specifically, 
WB7 is WB6 with the addition of the following commands:

• C++, which increments counter C;

• C--, which decrements the counter C (if C is already zero, C is unchanged); and

• If Zero(C), go to L; which goes to line L if counter C holds the value 0.

For example,  the following is  a  WB7 program that checks for balanced parentheses by tracking a 
counter of the number of open parentheses:

// Checks whether the input string is a string of balanced parentheses.  We
// maintain a counter C holding the number of unmatched open parentheses.  If
// C drops below zero or is nonzero at the end of the input, we reject.  Otherwise
// we accept.

// Start:
0: If reading B, go to Done.
1: If reading ), go to MatchClose.
2: C++.
3: Move right.
4: Go to 0.

// MatchClose:
5: If Zero(C), go to Rej.
6: C--.
7: Move right.
8: Go to 0.

// Done:
9: If Zero(C), go to Acc.
10: Reject.

// Rej:
11: Reject.

// Acc:
12: Accept.

Although the above program only uses a single counter  C, it is possible for a WB7 program to have 
multiple different counters (call them C1, C2, …, Cn).

i. Describe how to convert an arbitrary  WB7  program into a  WB6 program.  Your description 
should address the following questions:

1. In converting from WB7 to WB6, will you need to introduce extra stacks, tracks, variables, 
tape symbols, or tapes?  If so, how many of each will you need and why?

2. In converting from WB7 to WB6, will you need to set up the tapes, stacks, tracks, or vari-
ables in any way before beginning the program?  If so, how and why?

3. How will  you translate  the commands  C++,  C--,  and  If Zero(C) Go to  L into 
equivalent WB6 commands?  You should give the specific command sequence with which 
you will replace these commands.

Note that counters can hold arbitrarily large natural numbers, so you cannot implement them by 
using WB3-style variables (since the number of tape symbols is finite).

* Handout 18 lists the major features of each version of the WBn languages.



The counters from WB7 only support increment, decrement, and zero-testing.  Let's define WB8 to be 
WB7 with a few more operations defined on these counters:

• C1 := C2, which sets the value of counter C1 to the value of C2;

• C1 := C2 + C3, which sets the value of counter C1 to the value of C2 + C3;

• If C1 = C2, go to L, which jumps to line L if counters C1 and C2 have the same value.

In all of these operations, it is assumed that all the counters in an expression are different.  Thus the ex-
pression C := C is illegal, as is C := C + D.

For example, here is a program that checks if the number of 2s in a string is equal to the number of 0s 
in a string times the number of 1s in a string:

// Checks whether the number of 2s in the input string is the product of the number 
// of 1s in the input string and the number of 0s in the input string.  It
// maintains five counters:
//   A: Number of 0s in the input
//   B: Number of 1s in the input
//   C: Number of 2s in the input.
//   D: Scratch space.
//   E: Computed value of A × B.
// If we find C = E, then the string is accepted.  Otherwise we reject.

// Start:
0: If reading B, go to Mul.
1: If reading 0, go to R0.
2: If reading 1, go to R1.
3: If reading 2, go to R2.

// R0:
4: A++.
5: Go to Start.
 
// R1:
6: B++.
7: Go to Start.

// R2:
8: C++.
9: Go to Start.

// Mul:
10: If Zero(A), go to Chk.
11: D := E.
12: E := D + B.
13: A--.
14: Go to Mul.

// Chk:
15: If E = C, go to Acc.
16: Reject.

// Acc:
17: Accept.

ii. Describe how to convert an arbitrary  WB8  program into a  WB7 program.  Your description 
should address the following questions:

1. In converting from WB8 to  WB7, will you need extra stacks, tracks, variables, tape sym-
bols, tapes, or counters?  If so, how many of each will you need and why?

2. In converting from WB8 to WB7, will you need to set up the tapes, stacks, tracks, variables, 
or counters in any way before beginning the program?  If so, how and why?

3. How will you translate C1 := C2,  C1 := C2 + C3, and If C1 = C2, go to L into equiva-
lent  WB7 commands?  You should give the specific command sequence with which you 
will replace these commands.

Since every WB6 program is automatically a WB7 program and any WB7 program is automatically a 
WB8 program, your results from parts (i) and (ii) shows that a language is RE iff there is a WB8 pro-
gram for it.  This means that Turing machines are equivalent to programs with multiple tapes, stacks, 
tracks, finite variables, and unbounded counters.  Hopefully this gives you a better understanding of the 
Church-Turing thesis!



Problem Two: Nondeterministic Algorithms (20 points)

Nondeterministic Turing machines make it possible to solve many problems that are extremely difficult 
to solve deterministically.

Prove each of the following by designing an appropriate nondeterministic Turing machine and proving 
that it has the appropriate language.  Feel free to describe your NTMs using a high-level description 
similar to what we covered in lecture.  Remember that for some NTM M, to prove that (ℒ M) = L, you 
should prove the following:

For any string w  Σ*, w  L iff there is some series of choices M can make such that M accepts w.∈ ∈

Notice that this statement is a biconditional.

i. Prove that the RE languages are closed under union.  That is, if  L1  ∈ RE and L2  ∈ RE, then 
L1 ∪ L2  ∈ RE. 

ii. Prove that the RE languages are closed under concatenation.  That is, if L1  ∈ RE and L2  ∈ RE, 
then L1L2  ∈ RE as well.

http://xkcd.com/205/

http://xkcd.com/205/


We will cover the material necessary to solve these remaining problems in Monday's lecture.

Problem Three: Unrecognizable and Undecidable Languages (20 Points)

i. Prove or disprove: If L1 is unrecognizable and L1  ⊆ L2, then L2 is unrecognizable.

ii. Prove or disprove: If L2 is unrecognizable and L1  ⊆ L2, then L1 is unrecognizable.

iii. Do your answers still hold when “unrecognizable” is replaced with “undecidable?”  What about 
“not context-free?”  What about “not regular?”

Problem Four: ATM is Unrecognizable? (12 Points)

In Monday's lecture, we proved that ATM  ∈ RE but that ATM  ∉ R.  Our proof worked as follows:

• Assume, for the sake of contradiction, that ATM is decidable.

• Using a decider for ATM as a subroutine, construct a recognizer for LD.

• Arrive at a contradiction, since we know that LD is unrecognizable.

• Conclude, therefore, that ATM is undecidable.

Initially, it might seem like we could easily modify this proof to show that ATM  ∉ RE by simply chang-
ing our assumptions as follows:

• Assume, for the sake of contradiction, that ATM is recognizable.

• Using a recognizer for ATM as a subroutine, construct a recognizer for LD.

• Arrive at a contradiction, since we know that LD is unrecognizable.

• Conclude, therefore, that ATM is unrecognizable.

Below is an incorrect proof along these lines.  This proof contains an error that renders the proof in-
valid.  Give the exact line of the proof that contains the error and explain why it is incorrect.

Theorem: ATM is unrecognizable.

Proof: By contradiction; assume that ATM is recognizable and let H be a recognizer for it. 
Then consider this machine D:

D = “On input ⟨M :⟩
Construct ⟨M, ⟨M .⟩⟩
Run H on ⟨M, ⟨M .⟩⟩
If H accepts ⟨M, ⟨M , reject.⟩⟩
If H rejects ⟨M, ⟨M , accept.”⟩⟩

We claim that (ℒ D) = LD.  To see this, note that D accepts ⟨M  iff ⟩ H rejects ⟨M, ⟨M .⟩⟩  
Since H is a recognizer for ATM,  H rejects ⟨M, ⟨M  iff ⟩⟩ ⟨M, ⟨M   A⟩⟩ ∉ TM.  Note that 
⟨M, ⟨M   ⟩⟩ ∉ ATM iff ⟨M   (⟩ ∉ ℒ M), since ⟨M, ⟨M  is an encoding of a TM/string pair.⟩⟩  
Consequently, we have that D accepts ⟨M  iff ⟩ ⟨M   (⟩ ∉ ℒ M).  Therefore, (ℒ D) = LD.

Since (ℒ D) = LD, we know that LD  ∈ RE.  But this is impossible, since we know that 
LD ∉ RE.   We have  reached  a  contradiction,  so  our  assumption  must  have  been 
wrong.  Thus ATM is unrecognizable. ■



Problem Five: Why Decidability and Recognizability? (24 Points)

There are two classes of languages associated with Turing machines – the RE languages, which can be 
recognized by a Turing machine, and the R languages, which can be decided by a Turing machine.

Why didn't we talk about a model of computation that accepted just the R languages and nothing else? 
After all, having such a model of computation would be useful – if we could reason about automata 
that just accept recursive languages, it would be much easier to see what problems are and are not de-
cidable.

It turns out, interestingly, that there is no class of automata with this property, and in fact the only way 
to build automata that can decide all recursive languages is to also have those automata also accept 
some languages that are RE but not R.  This problem explores why.

Suppose, for the sake of contradiction, that there is a type of automaton called a deciding machine (or 
DM for short) that has the computational power to decide precisely the R languages.  That is, L  ∈ R iff 
there is a DM that decides L.

We will make the following (reasonable) assumptions about deciding machines:

• Any recursive language is accepted by some DM, and each DM accepts a recursive language.  

• Since DMs accept precisely the recursive languages, all DMs halt on all inputs.  That is, all  
DMs are deciders.  

• Since deciding machines are a type of automaton, each DM is finite and can be encoded as a 
string.  For any DM D, we will let the encoding of D be represented by ⟨D .⟩

• DMs are an effective model of computation.  Thus the Church-Turing thesis says that the Turing 
machine is at least as powerful as a DM.  Thus there is some Turing machine UD that takes as 
input a description of a DM D and some string w, then accepts if D accepts w and rejects if D 
rejects w.  Note that UD can never loop infinitely, because D is a deciding machine and always 
eventually accepts or rejects.  More specifically,  UD is the decider “On input ⟨D,  w , simulate⟩  
the execution of D on w.  If D accepts w, accept.  If D rejects w, reject.”

Unfortunately, these four properties are impossible to satisfy simultaneously.

i. Consider the language REJECTDM = { ⟨D  | ⟩ D is a DM that rejects ⟨D  }.  Prove that ⟩ REJECTDM 

is decidable.

ii. Prove that there is no DM that decides REJECTDM.

Your result from (ii) allows us to prove that there is no class of automaton like the DM that decides pre-
cisely the R languages.  If one were to exist, then it should be able to decide all of the R languages, in-
cluding REJECTDM.  However, there is no DM that accepts the decidable language REJECTDM.  This 
means that one of our assumptions must have been violated, so at least one of the following must be 
true:

• DMs do not accept precisely the R languages, or

• DMs are not deciders, or

• DMs cannot be encoded as strings (meaning they lack finite descriptions), or

• DMs cannot be simulated by a TM (they are not effective models of computation)

Thus there is no effective model of computation that decides just the recursive languages.



Problem Six: Why All This Matters (20 Points)

The undecidability of the halting problem has enormous practical implications.  This question explores 
some of them.

Since their memory is finite, computers are not as powerful as Turing machines.  However, as comput-
ers start to get more and more memory, we can think of them as getting progressively closer and closer  
in power to Turing machines.  For the purposes of this question, we'll assume that a standard computer 
is equivalent in power to a Turing machine.

Because Turing machines and equivalently powerful models of computation can simulate one another, 
it is possible in any reasonable programming language to write a function like this one:

boolean simulateTuringMachine(TM M, string w)

This function takes in a suitably-encoded Turing machine M and a string w, then runs M on w.  If M ac-
cepts w, then this function returns true.  If M rejects w, then this function returns false.  If M loops 
on w, then this function loops forever and never returns.

Using the existence of the above function, and the fact that a TM can simulate a computer, answer the 
following questions.

i. Most operating systems provide some functionality to detect programs that are looping infin-
itely.  Typically, they display a dialog box containing a message like these shown below:

     

These messages give the user the option to terminate the program or to let the program keep 
running in the hopes that it stops looping.

An ideal OS would shut down any program that had gone into an infinite loop, since these pro-
grams just waste system resources (processor time, battery power, etc.)  that could be better 
spent by other programs.  Since it makes more sense for the OS to automatically detect pro-
grams that have gone into an infinite loop, why does the OS have to ask the user whether to ter-
minate the program or let it keep running?  Justify your answer.

ii. Suppose that you want to create a website that teaches people how to program.  On this site, you 
give a set of programming problems and invite users to submit programs that solve those prob-
lems.  For each programming problem, you write a small set of test cases that submitted pro-
grams should be able to pass.  Each test cases consists of a set of inputs to the user's program, 
along with the expected outputs.  Prove that it is impossible to automatically verify whether an 
arbitrary submitted program passes these tests.  You can assume that all that matters is whether 
the program eventually outputs the right answer, not how long it takes to do so.



iii. Suppose that you want to build an optimizing compiler that takes as input a program and pro-
duces as output the smallest possible program equivalent to it.  For example, given a program 
like this one:

    int main() {
        int sum = 0;
        for (int i = 0; i < 10; i++) {
            sum += i;
        }
        cout << sum << endl;
    }

The optimizer might output a program like this one:

    int main() {
        cout << 45 << endl;
    }

Prove that it is impossible to write a program that automatically optimizes any input program.

Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no mat-
ter what you write (as long as you write something!), but we'd appreciate it if you're honest about how 
we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that seem 
unreasonably difficult or time-consuming for a five-unit class?

ii. Did you attend Monday's problem session?  If so, did you find it useful?

iii. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

iv. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance la-
beled “Stanford Engineering Venture Fund Laboratories.”  There will be a clearly-labeled filing 
cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-aut1213-submissions@lists.stanford.edu) with the string “[PS7]” somewhere in the sub-
ject line.  If you do submit electronically, please submit your assignment as a single PDF if at 
all possible.  Sending multiple image files makes it much harder to print out and grade your  
submission.

mailto:cs103-aut1213-submissions@lists.stanford.edu


Extra Credit Problem: Unrestricted Grammars (5 Points)

An unrestricted grammar is a substantial generalization of context-free grammars in which arbitrary 
strings can appear on the left-hand side of a production, not just nonterminals.  This allows unrestricted 
grammars to replace arbitrary substrings of a sentential form with new substrings.

For example, the following unrestricted grammar generates the language { 0n1n2n | n   }:∈ ℕ

S → 0SX
X → A2
2A → A2
SA → 1
1A → 11

One possible derivation of 000111222 is shown here:

 ⇒ S (Apply S → 0SX)
 ⇒ 0SX (Apply S → 0SX)
 ⇒ 00SXX (Apply S → 0SX)
 ⇒ 000SXXX (Apply X → A2)
 ⇒ 000SA2XX (Apply X → A2)
 ⇒ 000SA2A2X (Apply X → A2)
 ⇒ 000SA2A2  A  2 (Apply 2A → A2)
 ⇒ 000SA2  A  A22 (Apply 2A → A2)
 ⇒ 000SAA2  A  22 (Apply 2A → A2)
 ⇒ 000SAAA222 (Apply SA → 1)
 ⇒ 0001  A  A222 (Apply 1A → 11)
 ⇒ 00011  A  222 (Apply 1A → 11)
 ⇒ 000111222

Given an unrestricted grammar G, we define (ℒ G) = { w  Σ* |  ∈ S * ⇒ w }.

Prove that a language L is RE iff there is an unrestricted grammar G where (ℒ G) = L.  This gives a for-
malism for describing the RE languages through generation, just as the Turing machine is a formalism 
for describing the RE languages through recognition.


